
GPU Tutorial 1:

Introduction to GPU 

Computing



New Concepts

 GPU Computation: Overview

 CUDA

 Hardware

 Software

 Program Flow

 Paradigms



A Note on Nomenclature

 In GPU Computing, it’s common to refer to the DEVICE and the HOST

 Host means the Motherboard

 Host is the CPU

 Host memory is system memory (RAM)

 Device means the Graphics Card

 Device is the GPU

 Device memory is graphics memory (VRAM)



GPU Computation: Overview



GPU Computation: History

 Can be charted back to the first discrete graphics processing units.

 Early solutions employed GLSL to act on data abstracted to pixel data –

dummy graphics shell.

 Per-pixel operations subverted the idea of colour data, and embedded other 

floating point data, which was operated on as though colours were being 

changed

 Often, researchers had to ensure their system rendered something, just to get 

the execution to complete – “engineering solution”



GPU Computation: History

 Began to take off around 2004 in a limited fashion.

 Verdesca et al some of the earliest adopters – used it to accelerate a 

simulation for the Pentagon – realised that the GPU could be used to speed up 

line-of-sight checks between AI agents

 GPU hardware and API development, though, remained focused on graphics



GPU Computation: History

 DirectX 10 – Unified Shader Architectures

 If you have to go there, you might as well go all the way – General Purpose

 Identifying issues the GPU would be good at solving

 NVIDIA CUDA

 AMD FireStream/“Close-to-Metal”/Stream SDK…

 One of these is still around…



CPU Computation: Here and Now

 Diverged into two areas:

 GPU Computing

 Heterogeneous Computing

 From a researcher’s perspective, their focus is different

 GPU Computing research is using the GPU to accelerate solution of a specific problem

 Heterogeneous Computing research is deploying code optimally across multiple 

different types of core

 From a game engineer’s perspective, they’re the same thing

 If we’re deploying something to the GPU, it’s to free up needed CPU cycles/avoid 

taking CPU cycles

 We’ll always be using those free CPU cycles for something else – if we weren’t, we’d 

not bother shunting stuff to the GPU, because graphics.



CPU Computation: Here and Now

 Multiple contemporary APIs

 APIs have different focus, depending on purpose (purpose is often 

commercially driven rather than technologically driven – ‘keeping relevance’)

 Available APIs:



CPU Computation: Here and Now

 CUDA vs OpenCL – GPU vs Heterogeneous

 We cover CUDA for three reasons:

 You’re learning the principles, not an API

 The hardware you have is better suited to feature-full CUDA

 CUDA is more accessible to a C++ programmer



CUDA



CUDA: What is it?

 Compute Unified Device Architecture

 API for writing functions which execute on the GPU

 Syntax focused on highly parallel executions

 Both a Hardware and a Software API



CUDA Hardware



CUDA Hardware



CUDA Hardware

 The GPU’s architecture is completely different to the CPU’s

 One 1.5MB L2 cache pool divided between hundreds of cores

 Compare that with 256KB per core on an i7-4770K CPU

 Far more vulnerable to cache misses



CUDA Hardware

 These weaknesses make sense, though, given they relate to the GPU’s 

strengths

 GPUs are designed to execute the same shader thousands of times

 Shaders are small, simple (in terms of computation) programs

 Don’t need massive cache pools, don’t need to communicate between shaders

(much), don’t need the versatile architecture of the CPU

 Couldn’t build a GPU with the architecture of a CPU



CUDA Software

 C/C++ Style

 Can use classes/structs

 Function calls use similar syntax

 Compiles in the same IDE

 Interface C++ code with .cu files through external functions (extern)

 Compatible with MSc Hardware



CUDA Software



CUDA Software: Thread

 Instance of a Kernel. Thread with ThreadID 103 accesses array index 103 to 

obtain its data.

 Can access per-thread memory

 Can access per-block shared memory, to communicate with threads in the 

same block

 Can access global memory if needed



CUDA Software: Block

 Group of threads

 Block defines which threads can communicate via shared memory

 All threads in a block notionally execute in parallel

 But they don’t really, if the number of threads in the block exceeds the 

occupancy of the GPU

 So communication between specific threads can be problematic



CUDA Software: Grid

 Grid is an array of blocks which is triggered by a specific kernel function 

execution

 Grid reads inputs from global memory

 Grid outputs data back to global memory



CUDA Software: General

 Kernel function generates a grid, with dimensions of the grid passed in as 

parameters.

 Constants are stored in Device’s constant memory accessible by all threads

 Can’t be changed during execution, because constant

 Arrays cannot be stored in constant memory

 Arrays can be stored in shared memory



Program Flow



CUDA Program Flow

 CUDA programs require declaration of memory

 Similar to C rather than C++ in this regard

 Rather than newing a variable, we declare an allocation of memory and assign 

it a name (and a size)

 cudaMalloc

 Generally done before CUDA function call (allocate at startup)



CUDA Program Flow

 Call the externalised CUDA function, passing in reference to data stored on 

Host memory

 Copy that data to Device memory (cudaMemcpyHostToDevice)

 Execute kernel on data

 On completion of kernel execution, copy results back to Host memory 

(cudaMemcpyDeviceToHost)



CUDA Program Flow

 The process reflects the nature of the GPU as a batch-based number cruncher

 Having performed an embarrassingly parallel operation on a load of data, we 

give that data back to the CPU so it can do something useful with it

OR

 We keep it on the GPU to do something useful with it (such as directly 

rendering the results)

 GPU computation in real-time systems is, therefore, akin to heterogeneous 

computing – we want something done fast, and often, with batches being 

passed regularly to the GPU



CUDA Program Flow

 Reason we expect batches to be passed regularly is simple: scheduling

 If we’re randomly occupying the GPU with some non-rendering task, that’s a 

fraction of the frame where the GPU cannot be rendering

 We cannot ‘render more’ on other frames (take up the slack when not using 

GPU compute) because that means on the frames in which we do compute 

we’ll get a performance hit

 So if we don’t do a GPU compute update every frame, we’re wasting GPU 

cycles every frame where we’re not GPU-computing



Paradigms



CUDA Paradigms

 Memory footprint

 Parallelisation

 Host-Device Communication

 Overhead



Memory Footprint

 GPU has limited cache resources shared between a large number of cores

 More vulnerable to cache misses than CPU architecture

 Follows that we need a low memory footprint per kernel-instance

 Algorithms which have a large per-instance memory footprint may need 

restructuring

 Algorithms which have a lazy per-instance memory footprint may need 

unlazifying



Parallelisation

 GPU excels at solving embarrassingly parallel problems

 Embarrassingly parallel problems require little work to separate into parallel, 

independent tasks (no dependency/communication between threads)

 Adding communication between threads is possible (shared memory) but can 

really slow down our execution

 Something to bear in mind when selecting algorithms to deploy to the GPU



Host-Device Communication

 GPU can only act on variables it’s been told about

 Declaring a constant on the Host does NOT mean the Device can see it

 Need to declare such variables twice, once for Host, once for Device

 Non-constant variables need passing to the GPU explicitly with each CUDA 

function call – they don’t need mallocing every frame, but they do need 

memcpying



Overhead

 On the subject of memcpying…

 Every CUDA function will require memcpying (either to the GPU, from the 

GPU, or both)

 These instructions are expensive – but become cheaper per element the more 

elements you send (depending on memory architecture, but usually true)

 Need to ensure that whatever performance gain we get from the GPU 

execution outstrips the real-time cost of the overheads, or no point



Overhead

 Also, context switching

 When we change the GPU from compute tasks to rendering tasks, its cache 

needs flushing

 This isn’t a –very- expensive operation, but it needs to happen every time the 

context switches

 Thus, important that we do every frame’s GPU computation sequentially, 

BEFORE we trigger any rendering tasks, or we’ll multiply this overhead 

significantly

 This has consequences for threading on the Host – separating renderer thread 

from GPU compute can lead to Bad Things



Summary

 Introduced GPU Computation

 History

 Current API options

 GPU Compute vs. Heterogeneous Compute

 Introduced CUDA

 Hardware

 Software

 Described flow of a CUDA function

 Discussed paradigms of GPU computation (as applicable to CUDA as anything 

else, except maybe Unified Memory Architecture)



CUDA Implementation

 Launch the standard CUDA project

 Explore the variable types listed in the CUDA API

 Attempt to expand the test CUDA function to cover arrays of thousands of 

randomly generated floating point numbers.


