
Networking Tutorial 2:

Networking Issues in

Games

New Concepts

 Types of Network Game

 The Real-Time Condition

 The Consistency Condition

 Zoning

 Interest Management

 Dead Reckoning

Network Games: The Early Years

 Purpose of network games is to permit multiple users to interact in a single

gaming environment from different terminals

 Early approaches weren’t much more sophisticated than an IRC client

Network Games: Multi-User Dungeons

 MUDs popularised the concept (1970s+)

 Generally followed tabletop RPG tropes

 Games were often protracted, session-based affairs

 Some had player-adopted DM roles, others automated

Network Games: MUD to MMORPG

 Graphical MUDs (like EverQuest and UO) pushed the genre forwards

 Also tested the limitations of network technology

 Other multi-player experiences of the period had significantly fewer

interacting players (e.g., Baldur’s Gate multiplayer had 6 people and dubious

reliability)

Classifying Network Games

 Network games are a sub-category of Network Virtual Environments (net-VEs)

 Two active research areas (with increasing amounts of cross-pollination)

 Distributed Interactive Simulations (DISs)

 Collaborative Virtual Environments (CVEs)

Distributed Interactive Simulations

 Where a lot of net-game engineering comes from

 Focus is on real-time simulation and interaction

 Research often (but decreasingly) associated with military application

 Which kinda makes sense when you’re developing Call of Duty

Collaborative Virtual Environments

 Collaboration over simulation

 Communication more important than real-time interaction

 Simplest CVE is a virtual board-room call over Skype

 Blackboard is a form of CVE

What about OUR game?

 Which techniques you select from what source depend on the nature of the

game.

 Real-time?

 Turn-based?

 Somewhere in the middle?

 Level of detail – is position REALLY position? Is interaction REALLY interaction?

A note on bandwidth

 The rate at which the network can deliver data to a destination client.

 Typical (new) Ethernet provides 1000 Mbps (1,000,000,000 bits per second).

 Most online games played over the internet, where sustained bandwidth

varies a great deal and, in the UK, tends to cap at about 40Mbps

 The more complex a virtual world is, the more bandwidth is required

A note on bandwidth

 20 clients each connected in a peer configuration broadcasting information

about every entity they’re responsible for, every frame.

 Each client is responsible for 100 animated entities (2000 in total virtual

environment).

 Each entity requires position vector information to be distributed for a frame

rate of 25 frames per second (assume this information may be carried in 3

eight bit word lengths – we ignore packet dependent data here).

 24 * 2000 * 20 * 25 = 24, 000, 000 bits need to be distributed per second

(bandwidth 24Mbs).

A note on bandwidth

 That’s only considering simple data

 What about complex data?

 Data that updates more than once per frame?

 And how long does it take us to process and react to that data when it’s

received?

 And latency?

Leads to our Constraints

 Two constraints are key to how we go about structuring our net game

 Real-time Problem – our simulation should be updated in real-time. Can we

actually do this? What impact is there if we can’t?

 Consistency Problem – our clients should share a consistent world view. Can

we actually do this? What impact is there if we can’t?

 And where does bandwidth tie into it?

Real-Time Problem

 If player U1 fires a gun by time t, then all players should see player U1 fire a

gun by time t

Example of the Real-Time Problem

 Three users (U1, U2, U3) participate

in an online FPS.

 U2 appears in 6 different positions

in consecutive frames (running in a

straight line).

• At frame 3, U2 enters the line of

fire of U1 and U3.

• Due to message latency, U1 views

U2 at frame 3 sufficiently late for

U3 to gain an unfair advantage

U1

U3

Real-Time Problem

 First consideration:

 Is this element one which requires real-time updating?

 Gravity? Precise animation frame? Probably not

 Second consideration:

 Can this update be managed client side without real-time communication with the

server?

 E.g., time-reactive skybox? Updates in real-time, but only needs to periodically

sync with the server’s view of time

Real-Time Problem

 If element DOES need real-time solution

 Need to minimise impact of delayed packet receipt

 Need to minimise packet size

 Need to minimise time taken to process packet (balancing act with packet size)

 Approaches to resolving this:

 Zoning and Interest Management

 Predictive Modelling

Consistency Problem

 If player U1 shoots player U2 then all players should see player U1 shoot

player U2.

Consistency Problem

 Solutions to this tend to be divided between network engineering (i.e., socket

type employed) and design considerations of the game

 Design approaches often involve completely extracting any real-time

considerations from the problem which needs perfect ordering

 Example: Looting in an MMO. You never pick up a physical sword.

Addressing the Real-Time Problem

 Zoning

 Interest Management

 Dead Reckoning

High Level Zoning

 Continents in WoW

 Planets in TOR

 Map Zones in Warhammer Online

 Basically, anywhere you can stick a loading screen

 If normal distribution of players, normalises server workload (and traffic),

reducing per-server bandwidth and improving performance

 Reduces traffic to each individual client, improving performance

High Level Zoning

 Vulnerable to the same issues as world-space partitioning in collision

detection

 If all of your players are in one zone, you have overhead of management with

no benefit

 If you have large-attendance events in one zone, you artificially engineer your

own worst-case scenario

 If your game has level-based progression, you also artificially engineer your

own worst-case scenario unless you have some incentive for high-level players

to return to low-level zones (e.g., GW2)

Spatial Zoning

 Map is logically divided into multiple zones

 Each zone encompasses players in the same vicinity

 A player moving from one zone to the next is disconnected from one server,

and joins another

 Zones are geographically connected, normally using squares or hexagons as

these interconnect neatly (and can easily be checked against position), while

irregular shapes are more complex to interconnect (and more complex to

compare against position)

Spatial Zoning

 Density and shape of zones relates to the rate at which a client will be moved

between servers:

Spatial Zoning

 The goal is to ensure that a given client never ‘feels’ like he is changing

servers – no loading screen, seamless performance

 Maintaining this can be difficult, and often requires some overlap in these

spatial zones, or duplication of data between zones to avoid players ‘popping’

into existence as they cross a boundary

 As the servers managing these zones have dedicated, physical connections

and are in the same geographical location, communications issues between

servers are minimised

 An additional layer of complexity if employed for distributed-server

architectures

Spatial Zoning

 Design elements can help

 Reduce visibility across zones with terrain features (e.g., mountain ranges

blockading most of a region’s edge, with a gap in the middle

 Making the transitioning area a corridor, rather than an open space:

Megaservers – Zoning, SDRAWKCAB

 These approaches can be used to merge low-population virtual spaces, to

make better use of computational resources.

 As servers can be spun up and spun down, nowadays, in realtime, this can be

a significant cost saving while also having strong gameplay benefits (GW2

world events – no fun if your realm is empty)

(Area Of) Interest Management

 Two basic approaches:

 Static Geographical Partitioning

 Behavioural Modelling

 As in all things, Game Developers cherry-pick from both.

Static Geographical Partitioning

 Essentially maps to Zoning

 Most interesting interactions occur in specific regions in the game world (such

as cities)

 Players are not expected to remain outside of these ‘key regions’ for long, by

way of intervening territory being intentionally uninteresting

 Client Area of Interest, then, is the key region they occupy, or the largely

unoccupied wilderness between key regions, with no finer grain approach

being applied. Second Life employs this approach.

Behavioural Modelling

 Military simulation example: A plane and a jeep

 The two entities have different:

 Speed ranges

 Visual detection ranges

 Area of influence ranges

 As such, the area of interest of the plane is modelled differently to the area

of interest of the jeep.

 Not as deeply explored as geographical partitioning

Interest Management Models

(Publisher-Subscriber)

 Publisher creates an event; subscriber consumes the event.

 A client is therefor a publisher of their own actions, and a subscriber to the

actions of others who can influence them in some fashion

 When a client can no longer be influenced by the actions of another publisher,

it no longer receives their events

 Permits a level of control of broadcasting – counter cheating

Interest Management Models

(Aura-Nimbus Approach)

 Aura-Nimbus approach is straightforward to understand, and commonly employed.

E3

E1

E2

Interest Management Models

(Aura-Nimbus Approach)

 Aura

 Client’s range of influence

 Nimbus

 Client’s range of interest

 If a client’s range of influence intersects with another’s range of interest, it

becomes a publisher to that client

Interest Management Models

(Aura-Nimbus Approach)

 Implementation is analogous to simple sphere intersections in physics

 Drawback is lack of scalability – if everyone is in everyone else’s regions of

interest, all the communications overhead and additional sorting overhead of

the algorithm

Other Perception-Based Approaches

 Purpose of interest management is reducing network traffic to client

 Simple examples are visibility and reachability checks

 Other contextual checks based on nature of the game – possibility of clients

being geographically co-located but unable to interact or affect one another?

 Possible optimisation of which elements are sent based on this – e.g., if no

friendly fire possible, only need to know if an ally dropped a grenade, not

how much damage it did, etc.

So, Dead Reckoning

Dead Reckoning: Bandwidth

 Consider 4,000 Clients connected to a single centralised server (WoW model)

 Server is responsible for tens of thousands of entities, of which 400 (PCs and

NPCs) on average need updating to any given client.

 Assume same position vector information to be distributed at 25 frames per

second.

 38.4Mbps upstream from the server; 2.4Mbps downstream to the server.

Dead Reckoning: Latency

 The amount of time required to transfer a bit of data from one point to

another.

 LAN latency may be less than 10 milliseconds, transcontinental connections

may be 60-100 milliseconds and intercontinental connections may be over 200

milliseconds (taking the Internet as an example).

 To ensure successful interaction the latency should not exceed 100

milliseconds (200 milliseconds delay overall).

Dead Reckoning: Latency

 Consider the consequences of latency on our update rate in the hypothetical

system.

 Remember that a physics engine running at 120FPS will update every 8ms.

 As such, broadcasting every physics update is pointless in a network game –

it’s infeasible, and by the time an update has been received and confirmed, a

dozen other updates might have occurred.

 If we use our physics engine’s update rate, we can easily increase our

bandwidth consumption four-fold.

Dead Reckoning: Can We Do Without It?

 So, we’ve established that we can’t send every physics update.

 Even if we consider the MMO model where clients only update the server

about a single entity, latency makes it impractical.

 Imagine an MMO where every character’s position is only updated once every

quarter of a second, pinging from place to place.

 Bad engineering, bad gameplay, bad game.

Dead Reckoning: The Problem

 The Key Issue: There can be no such thing as a ‘god-like’ view of every

object’s absolute position at any given time in a networked game, which is

shared by the server and all clients.

 Can’t happen unless you have a 0-latency, 0-packet loss network. Which can’t

happen, because light speed and network engineering.

 All any client has at any given time is its own perceived truth: as such, the

best-case scenario is a believable guesstimate as to where any entity is.

Dead Reckoning: The Solution

 Comes from the term “Deduced Reckoning”, and is based on physics of our

simulation.

 As with physics system, we’re making a best guess on where something ought

to be, based on where it was, and where it was headed.

 Difference is that someone else can mess with this object without our

knowledge, and we only find out after the fact!

Dead Reckoning: Prediction

 General solutions to dead reckoning use derivative polynomials.

 0th Order polynomials

 Pure position update – frequent state regeneration

 Analogous to Projection Method in collision response

 1st Order polynomials

 Employs velocity

 2nd Order polynomials

 You can see where this is going…

 2nd Order is most popular, but not always most appropriate…

Dead Reckoning: Prediction

 Second order polynomials may appear to present more accurate prediction.

 They are more computationally expensive than order one polynomials.

 They may not be better at predicting position. For example, acceleration may be

changing frequently making this parameter almost useless in calculations.

 It may be wise to allow a choice of which polynomial order to use on a per

entity basis at run-time.

 This provides the greater benefit of lowering bandwidth requirements while aiming

to preserve as much consistency as possible.

 Consider the example of an object with highly volatile acceleration, but relatively

normal velocity (i.e., acceleration is oscillating to maintain a velocity, like an

aeroplane autopilot).

Dead Reckoning: Prediction

 Sometimes polynomial prediction is not appropriate.

 For example, a tank traveling down a road or a particular maneuver carried out by

an aircraft.

 In the above examples we can predict the movement of an entity by

identifying some preset maneuver that an entity will be participating in for

some time.

 This makes prediction a little easier.

 Sometimes polynomial prediction in 2D will suffice for 3D environments.

 This is especially the case when objects are traveling along the ground.

Dead Reckoning: Convergence

 Consider a scenario where we are playing a game against another player; both of

us control planes, A and B (e.g., War Thunder)

va0 vb0

sa0 sb0

Dead Reckoning: Convergence

 Let us consider the scenario unfolding from the perspective of our client
machine (governing plane A).

 Our system performs an update – based on input data for A, and based on
dead reckoning for B:

va1

vb1

sa1 sb1

Dead Reckoning: Convergence

 Except… Let’s consider that same update for plane B:

va1

vb1

sa1

sb1

Dead Reckoning: Convergence

 Plane B adjusted its velocity to evade us (which makes sense!)

 But now we have two conflicting realities, one for each client.

 And they are a scenario we can’t rationalise while maintaining believability –

because we waited too late to consider the problem.

Dead Reckoning: Convergence

 Often, approaches to avoiding this conflict of world view are design based

 We could limit angular velocity of the planes, so evasion would be impossible

once inside a reasonable latency threshold

 We could simply force the clients to assume the planes survived until the

server dictated otherwise

 Consider the example of the cast-bar in an MMO

 Can also employ frequent state regeneration for very specific variables – like

shouldIBlowUp.

Dead Reckoning: Convergence

 Less dramatic scenario: small adjustment to attitude in flight, B

moving slightly out of formation with A

 We can simply snap to the corrected position when the server

next updates (with a DR correction for the time since the update

was first received from client B)

 Breaks believability

 Some MMOs do this, specifically to address lag-spikes (where

believability has already been lost)

 More often, we’ll interpolate and slowly correct our position – or

move towards correctness.

Dead Reckoning: Convergence

 Linear Interpolation:

 Identifies convergence point at some position in the future, based on the latest

predicted path.

 Linearly animates an entity from its current position to the convergence point.

 Better than zero order when large corrections are required but may still promote

unnatural movement as entities suddenly change direction.

 Splining

 Generate a smooth curve of motion which tends us towards where we believe we

ought to be

 Computationally expensive, but least ‘jarring’ for the player

Dead Reckoning: Eventual Consistency

 All of these approaches to correcting conflicting world views lead us towards

consistency

 But we never reach it, because by the time we have, someone’s already

moved again

 Only time we ever reach it is if everything stops moving and interacting

 As with our linear solver in our physics engine.

Implementation

 Consider the concept of dead reckoning.

 Explore the implementation of various orders of dead reckoning (and

convergence) in your project.

