
AI Tutorial 1:

Finite State Machines



New Concepts

 The Finite State Machine

 Programming a State Machine

 Hard-Coded Switch Statements

 Hard-Coded State Pattern

 Interpreted State Pattern

 State Oscillation

 AI – Behaviours and Types

 Hierarchical FSM

 Fuzzy State Machines



The Finite State Machine



What is a Finite State 

Machine?

 Wikipedia tells us that a FSM is:

“A behavioural model used to design computer programs. It 

is composed of a finite number of states associated to 

transitions. A transition is a set of actions that starts from 

one state and ends in another (or the same) state. A 

transition is started by a trigger, and a trigger can be an 

event or a condition.”

 To us, it’s the building block of all game AI



FSM in Game AI

 Consider the purpose of AI in videogames

 To provide challenge/immersion for the player

 If the AI isn’t doing that, it’s not doing anything useful

 FSM’s are a quick way of changing AI behaviours to keep 

the encounter, ideally, challenging – at the very least, to 

make the player feel engaged in some way



Examples of FSMs in Game AI

 One of the most elegant FSMs in gaming comes from 

ghosts in Pac-man.

 The ghosts have four behaviours:

 Wander the maze

 Chase Pac-man

 Run away from Pac-man

 Return to the central base 



Examples of FSMs in Game AI

 Ghosts change (transition between) behaviours based on 

triggers in the game environment.

 We can summarise these transition conditions and their 

associated states using a STATE DIAGRAM

 State Diagram’s take this form (very examinable)



Examples of FSMs in Game AI



Key Features of a Finite State 

Machine?

 The elements of FSMs in the quote are key to –why- it’s 

the building block of game AI

 State of the agent, connected to

 Transitions – the process by which the agent changes 

state, caused by

 Triggers – events or conditions in the environment which 

require the agent’s behaviour to change



Key Features of a Finite State 

Machine?

 The Finite State Machine must always be completely 

closed

 This means that there will never be an eventuality 

which is not covered by the FSM

 These eventualities can be complex, design-related 

problems

 Or as simple as having a state exit when a variable is 

>1, or <1, but not handling =1



Programming a

State Machine



State Machine Types

 Many different ways to approach FSM encoding

 Vary from Expert-System logic structure to database 

searching

 We cover three you’re likely to come across or employ 

yourselves

 Hard-Coded Switch Statements

 Hard-Coded State Patterns

 Interpreted State Patterns



Hard-Coded Switch 

Statements

 Since a state machine is notionally an expert system, it 

can be encoded the same way – a series of conditional 

if-then statements.

 E.g.



Hard-Coded Switch 

Statements

 This embeds all of the transitional logic in the checks

 Notice in the example that the behaviour code is 

contained within a function (e.g. State1Behaviour)

 Once that function updates, the algorithm decides if a 

transition has been triggered through some other 

function (e.g. CheckTrigger1to2 to see if the transition 

which would move from STATE==1 to STATE==2 has 

occurred)



Hard-Coded Switch 

Statements

 This has the benefit of being very quick to prototype

 Very easy to understand – it’s intuitive

 Very difficult to maintain

 Difficult to debug

 Difficult to encode even relatively simple FSMs

 Not extensible



Hard-Coded State Pattern

 Slightly more extensible approach to Hard-Coded Switch 

Statements

 Leverages benefits of object-orientation and 

inheritance

 Create a parent ‘State’ class, which all other states 

inherit from.

 Assign a State member variable to an agent

 Encapsulate all of that state’s logic within the specific 

state’s code, including it’s outbound states

 When a transition occurs, replace ‘States’



Hard-Coded State Pattern

 Might implement an FSM class which manages 

transitions between states, to centralise the logic 

slightly

 If taking this approach, will probably need some form of 

message-passing implemented where the FSM class 

instigates a transition when instructed to by a trigger 

detected within a state behaviour

 Still not particularly extensible as every time a new 

state is added, states which interconnect with it need 

re-encoding/recompiling



Interpreted State Pattern

 This is the data-driven variant of a hard-coded state 

pattern.

 Information regarding state connects and transition 

triggers is stored outside of the code base, and read in 

from a data file at start up

 As this approach is data driven, the make-up of the FSM 

can be tweaked and tuned without recompiling



Interpreted State Pattern

 Basically, this is the nascent form of the gameplay 

script, in principle

 Can be handed off to high-level designers without any 

knowledge of the codebase

 They only need to come back to the programmers when 

they want a new state encoded – and even then, not 

necessarily, depending on what states actually entail

 If experience level in an RPG is represented by a state, 

and only contains changing stats, this could also be data 

driven, as an example



State Oscillation



Agent

The Problem

 Envision the following 
scenario.

 A hostile AI agent is 
faced with a player.

 The agent moves slower 
than the player.

 When the player is 
inside aggro range, the 
mob moves towards her

 When the player moves 
out of aggro range, the 
mob moves back 
towards its patrol zone

Player



The Problem

Agent

Player

Agent

Player



The Problem

 Easy to see how this maps to other, autonomous 

scenarios

 Altitude adjustment on a plane

 A car following a route on the road

 So how do we solve it?



The Solution

 Hysteresis

 We make the boundaries 

that trigger conflicting 

states different

 The player has to run a 

bigger distance away before 

the agent will give up

 Consequently, they have to 

run even further back to 

convince the agent to re-

engage 

Agent



Behaviours and Types



The Difference is Crucial

 AI Behaviours are individual behaviours which an agent 

might exhibit

 AI Types are categories of agents defined by a specific 

collection of behaviours

 By structuring our system this way, the AI is efficiently 

encoded – no unnecessary duplication of behaviours

 A data driven approach to defining the state machine 

permits designers to create new AI types simply by 

defining them as collections of behaviours 



Illustrating the Difference



Hierarchical FSMs



Well, if we’re defining agents 

by collections of behaviours…

 We can do the same for states, yes

 In fact, this is standard practise

 If we can define an overarching state by a collection of 

sub-states with their own context-specific transitions, 

we do so

 Consider the example of a guard in a first-person 

shooter game



Example of Hierarchical FSM



Hierarchical FSM

 Makes code very extensible

 Can change one small aspect of agent behaviour without 

worrying about how it flows to other states beyond the 

lower-level grouping

 Permits very sophisticated-seeming AI, at lower 

computational cost than implementing the same thing 

with a single level of FSM



Fuzzy State Machines



Fuzzy Logic?

 Alternative to binary logic

 More detail in a future lecture

 For purposes of Fuzzy State Machines, just need to know 

that fuzzy logic replaces binary logic – instead of 

something being true or false, it can be partially true.



Fuzzy State Machine

 If we can say that a state can be partially true, then we 

can say the behaviours associated with it might be 

partially followed

 Consider the example of a police officer who can shoot 

a player from behind the wheel of his police car or on 

foot

 If the police officer takes cover behind the open door of 

his car, firing through the window void, he can be 

utilising elements of both the driving and running 

hierarchical states

 Encoding this directly would make the FSM significantly 

more complicated – this way, we have the opportunity 

to leverage work already done



Summary

 Introduced Finite State Machines

 Discussed some fashions in which they can be encoded

 Considered some flaws with their naïve implementation 

(added hysteresis)

 Considered hierarchical FSMs and Fuzzy State Machines 

(FuSMs)



Implementation

 There’s a very simple hard-coded switch statement FSM 

provided as sample code

 Why not extend it into a hard-coded or interpreted 

state pattern?


