
GPU Tutorial 2:

Integrating GPU Computing

into a Project



New Concepts

 Integrating CUDA with our existing code base

 Structuring data for execution on the GPU

 Sorting data for execution on the GPU

 Numerical Integration on the GPU

 API features

 Variable declarations

 Host Functions

 Kernel Functions

 Device Functions



Integrating CUDA into our Existing 

Codebase



First, BACK EVERYTHING UP

 Throughout the course, the concept of backing up your work before 

undertaking significant changes of direction has been suggested

 From now, and for the rest of the degree programme, managing your software 

is essential

 If you intend to integrate CUDA into your coursework, great! Just make sure 

you’ve got a version stored of what you had before you made the attempt



So, what challenges are there to 

integration?

 Assuming you’ve downloaded the CUDA Toolkit and Nsight plug-in, very few

 Nsight attaches itself to Visual Studio, and uses its own compiler (nvcc) to 

process CUDA code into machine instructions for the GPU

 This should work seamlessly alongside Visual Studio’s C++ compiler, which 

handles the remainder of compilation

 But we need to make sure Visual Studio knows this is meant to happen before 

we can get started with GPU programming



Adding CUDA Runtime Libraries to an 

Existing C++ Project

 If we’re going to write CUDA 

functions, we need to include the 

CUDA libraries

 cuda_runtime.h and 

vector_types.h are two common 

examples

 Problem with just using #include 

for CUDA libraries is that it 

normally doesn’t work out the box



Adding CUDA Runtime Libraries to an 

Existing C++ Project

 This is because even with Nsight

installed, Visual Studio doesn’t 

know we intend to use it

 To fix this, we go to Build 

Customisations

 This will give us a list of build 

customisation files to choose from



Adding CUDA Runtime Libraries to an 

Existing C++ Project

 CUDA should be in there 

somewhere – multiple versions, if 

we have multiple versions installed

 Check the version we intend to use 

(7.5 in your case)

 Finally, click Project from the top 

menu, and rescan the solution. 

VS2013 should now see the 

libraries and remove include errors



Structuring Data for GPU 

Computation



Ancient Truths

 Fundamental maxim for GPU computing, which still largely holds true today, 

is:

Struct of Arrays, not Arrays of Structs

 What this means, really, is that the GPU works at its best when all kernel 

instances are working on the same contiguous chunk of memory, i.e.:



Memory Access Hierarchy Revisited

 Consider the memory access 

hierarchy for a single thread 

(kernel instance)

 A thread has access to all memory 

in the system, save the shared 

memory of other blocks

 But to access any memory not 

stored in a given level of cache 

requires it to follow the cache 

hierarchy for access



Memory Access: An Example

 Simple example called TestStruct

 Contains three Vector3s

 Consider a kernel which 

increments the values of those 

Vector3 elements

 The kernel has the execution order 

b, a, c

struct TestStruct {

Vector3 a;

Vector3 b;

Vector3 c;

} ;



Memory Access: An Example

 Consider an array of TestStructs

being sent to the GPU

 If that array is small enough (entire 

memory footprint smaller than L1 

cache component of a single SMX) 

no problem

 But if the problem’s that small, 

probably shouldn’t be on the GPU 

in the first place

struct TestStruct {

Vector3 a;

Vector3 b;

Vector3 c;

} ;

TestStruct TestStructArray[10];



Memory Access: An Example

 For a usefully large array, we’re 

now in a situation where for the 

kernel execution, two thirds of our 

L2 (and L1) cache data is useless 

for the first instruction

 If our data is more complex than a 

12 byte class, should be easy to 

see how we can wind up with cores 

of SMXs doing nothing

 Worse, we can potentially create 

cache miss scenarios if our total 

data exceeds L2 cache size (again, 

very possible) 

struct TestStruct {

Vector3 a;

Vector3 b;

Vector3 c;

} ;

const int N = 1000000;

TestStruct TestStructArray[N];



Memory Access: So what do we do?

 Restructure the data

 On the basis that we know what data elements our kernel instances will be 

accessing, in a deterministic fashion, we can create a struct of Vector3 arrays

 b[] is then accessed first by all cores – all cached data is relevant to the first 

instruction

 This allows the GPU to ‘warp’ the kernel – basically, runtime-optimisation of 

kernel deployment

 Branching if-statements complicate things, because access no longer 

guaranteed contiguous



Sorting Data for the GPU



So how does this map to big structures?

 Let’s consider a class PhysicsNode, 

illustrated right.

 If we were try to process every 

element of our physics engine on 

the GPU, it stands to reason the 

GPU would need all of this data

 Bearing in mind that our struct of 

three Vector3s is 36 bytes in size, 

this >188 byte structure will cause 

Bad Things to happen



Sorting vs. Refactoring

 We have two options, then, to 

process a data structure of this 

type

 First, we could refactor our entire 

codebase to operate solely in 

arrays for physical objects

 Can be costly in development time, 

and anything which costs 

development time increases the 

project budget

 Second, might be infeasible 

depending on how other elements 

of the software are engineered



Sorting vs. Refactoring

 The alternative is sorting the data 

prior to the point we memcpy it to 

the GPU –OR- sorting it after we 

copy it back –OR- both

 Sorting operations are costly – in 

the best case, assuming we’re not 

trying to optimise anything, we’re 

at least going to iterate through 

every object in our environment 

just to copy every element of data 

from the class and insert it into the 

appropriate array



Sorting vs. Refactoring

 This becomes even more expensive 

if we try to subdivide the actual 

data structures within the Class 

(i.e. breaking down the Quaternion 

into its component elements)

 This all adds into the overhead we 

talked about previously – and it 

becomes a balancing act.

 For everything we do to try and 

accelerate our GPU kernel, we 

need to know that acceleration 

will lead to net performance gain

 Difficult to know that in PCs, 

because platform variety



But this just applies to CUDA, right?

 No.

 It applies to all GPUs, to a greater or lesser extent

 In fact, hypothetically, it applies to all architectures – what we’re talking 

about is cache coherency

 The GPU is just much more vulnerable to the problem than modern CPUs



But this just applies to CUDA, right?

 Remember, Skylake CPUs have four levels of cache – and the last level is 

128MB in size – you just won’t ever make data structures big enough for a 

four-core CPU with that sort of memory architecture to ever encounter these 

problems

 By contrast, writing for the GPU is like writing for a thousand particularly 

dumb ZX81s who can’t talk to each other without asking everyone around 

them to shut up

 Again, you’re largely being taught principles, not an API; while the end of this 

tutorial does present API information for CUDA, the premises (kernels, 

functions that execute on the Device, functions that execute on the Host) 

map to most GPU computing APIs



Numerical Integration on the GPU



Let’s Consider the Problem

 Which integration methods, of those you’ve considered, would function best 

on the GPU?



Well, all of them, really

 Updating position and orientation of our objects – the first stage of our 

physics update – is an embarrassingly parallel problem

 Objects don’t interact with one another until the subsequent steps

 All we need know are the forces acting on our individual entities, which we 

compute either in the collision resolution stage or as a function of 

environment

 And we can integrate for each object

 If there’s an interface generated, that’s detected over the next two stages of 

the process (which aren’t integration)



Overhead

 That, of course, is the problem

 We need to memcpy the integration result back to the Host

 Update forces based on collision data

 Then copy force data back to the GPU for the next update

 Even more expensive if our system automatically corrects positions for 

interfacing objects, rather than relying on constraints – means recopying the 

entire position array



Not true in a collisionless system, 

though!

 In a particle system, there is no collision possibility to consider

 As such, don’t need to copy data back from the CPU to the GPU – the latest 

position data computed by the GPU will always be right

 Can be made even cheaper by oscillating between two kernel calls which flip 

the input and output array references

 Frame 1: Array1 = Input, Array2 = Output

 Frame 2: Array2 = Input, Array 1 = Output

 Etc.

 Might not even need to copy data from the GPU to the CPU, if the GPU is 

rendering the particles automatically (or has enough data already to know 

how to render them appropriately – it already knows where to render them!)



Verlet

 Special case of Verlet

 The lack of Velocity computation means no need to store velocity variable

 The nature of the GPU’s memory model means we can essentially store a 

large FIFO (first in, first out) array to access historical position data

 Means we can consider Verlet in higher orders for greater accuracy, and we 

can roll back in time relatively easily



Suitable Uses?

 Not really suitable to go through and change the physics engine to operate on 

the GPU – not enough time

 But you could add other effects through GPU computation

 Boids implementation – that’s just a bunch of forces

 Requires some thoughtful sorting of nearest neighbours to be optimal on the GPU

 Fluid motion simulation

 The more complex partial-diff methods are more appropriate for summer projects, 

but something simple like interfacing sine and cosine waves updating a heightmap

should be fairly simple

 Motion updates for a particle system (non-colliding physics objects)



CUDA API Features



Important Variables and Declarations

 There are a couple of ways we can declare variables to reside in specific 

areas of Device memory, and a few things we should know out the gate.

 There’s a CUDA variable threadIdx which is used to identify the kernel 

instance. In general, the first act of a kernel is to determine the instance’s 

thread ID (but not always!).

 threadIdx has dimensionality determined by your block dimensions (check 

CUDA SDK documentation) – in a one-dimensional block, threadIdx.x

defines the thread ID, but most blocks aren’t 1D



Important Variable Types

 We recall that the GPU has a memory space for Constant variables which is 

readable by all threads – we basically declare constants globally using the 
__constant__ tag, e.g.:

__constant__ float accel_g = 9.81;

 We also recall that there’s shared memory we can declare variables or arrays 

to be resident in. These are also declared globally or within a kernel prior to 
determining thread ID, using the __shared__ keyword, e.g.:

__shared__ int terrainType[1024];



Host Functions

 Host functions are generally forward declared in a .cpp file in which they’ll 

be called, then written explicitly in a .cu file (as a means of isolating the 

GPU-related portions of the program)

 That declaration will take a form similar to:

 It is this function which identifies the Host data we expect the GPU to 

process, and generally passes information regarding just how many threads 

we expect to create. It can also pass in block/grid dimensions, if we’re 

computing those reactively.



Kernel Functions

 These will generally be written in our .cu file, and are called within our Host 

function. They are called by the Host, but executed on the Device.

 They’re declared using the following syntax

 And called within the host function using this syntax

 Where the values between the angle brackets are customising the dimensionality 

of grids and blocks, and the variables are the memcpy’d data now resident on 

the GPU’s VRAM



Device Functions

 Device functions are a means of keeping your code tidy and modular (just as 

functions are in C++ and C more generally)

 Device functions are only called and executed on the Device. As such, the 

can only be called by a kernel or by other Device functions – a Device function 

can never be called by Host code – if you want Host code to perform a similar 

function, you need a normal C++ version of the function.

 The syntax for a Device function is

 A Device function can see any constant that its calling thread can see. It can 

only see shared memory data if that data is declared globally



Summary

 Discussed how we go about integrating CUDA into an existing project

 Considered the consequences for data arrangement of the GPU’s memory 

architecture

 Discussed numerical integration as a problem applied to the GPU

 Explored some API features of GPU Computation, using CUDA as a basis



Implementation

 Consider the N-body problem for a very busy solar system in 3 dimensions

 If you set the GPU to favour Shared Memory over cache, you can store the 

position and mass data for around 3000 objects as a large array which every 

thread can access

 Pick a number of objects and give every object an initial and appropriate 

velocity tangential to the line between it and the massive object at the 

centre (your ‘Sun’), update based on an integration scheme and computed 

forces between objects of a given mass, and see if you can render the output

 Have some fun with it! See what you can do to improve the efficiency of the 

approach – look up bank conflicts to see what might be causing slowdown at 

high numbers of entities


