
AI Tutorial 2:

Path-Finding and 

Crowd Management



New Concepts

 Graph Search

 The Game Environment as a Graph

 Minimum-Cost Path-Finding through A*

 Following the Path

 Crowd Management

 Approaches

 Strengths

 Issues



Graph Search



So, what is graph search?

 Unsurprisingly, it’s the searching of a graph

 What’s a graph?

 That, detective, is the right question.



So, what is graph search?

 A graph is a means of representing data through a series 

of vertices (points) and edges (connections)

 This graph has five vertices and eight edges



So, what is graph search?

 It’s easy to see how this abstract concept maps (pun 

intended) neatly to representation of an environment

 We add labels to the vertices, and costs to the edges.

 The the cost of moving from B to E is…?

B

D
A E

C

7

7

5

3
6

4

6

7



So, what is graph search?

 While it’s good to know the cost of each route we can 

take to get from B to E, normally we just want the 

shortest route.

 That’s the focus of today’s tutorial – the means in which 

we can determine that, and how we can leverage 

graphs as a concept to support our AI

B

D
A E

C

7

7

5

3
6

4

6

7



Why would we use it in 

Games?

 Consider what we discussed yesterday

 Imagine complex scenarios

 Shortcomings of a naïve FSM approach

 The most elegant solution is one we can apply with a 

minimum of edge cases



When would we use it in 

Games?

 A few examples are…

 The ghosts eyes heading back to base after Pac-Man has 

eaten them.

 The bad guys in Deus Ex or Metal Gear Solid heading 

toward the place where an alarm has been tripped, or 

the player has been spotted.

 Yorda running to the player when called for by Ico.

 The golden thread showing where to go next in Fable. 

 The route plotted on the map to the desired destination 

in Red Dead Redemption



A* as a Path-Finding 

Algorithm

 In this tutorial, we focus on the heuristic path-finding 

algorithm A*.

 A* is an optimisation of the Dijkstra graph search 

algorithm

 Commonly employed in industry

 Not just for path planning



A* as a Path-Finding 

Algorithm

 There are three main steps in providing path-finding 

technology for AI agents in a game

 Represent the environment as a graph of small 

navigable units or nodes.

 Find a route connecting a series of these nodes from the 

starting point to the target location.

 Move the AI agent along that route convincingly. 



Representation of the 

Environment



What do we need to know 

about our node?

 This is a very context-laden question

 It varies depending on how you’ve opted to structure 

your graph geography

 The essential elements are, in the simple case:

 Unique Node ID

 Connections

 Position

 Something which lets us know if the node is passable



What do we need to know 

about our node?

 A more realistic node structure would resemble:



What do we need to know 

about our node?

 The reason there’s no universal list is that the problem 

of what needs storing is contextual

 If you can algorithmically determine your connections, 

you don’t need to maintain a list of connected nodes

 If you’re using a list of connected nodes, you don’t 

necessarily need a ‘passable’ Boolean, you can just 

delete impassable connections

 Difference between representing roads between junctions 

as edges, and geographical representation of grids



Our example scenario

 Consider the diagram 

right.

 This is a geographical 

division of the 

environment

 The car seeks to 

navigate from its 

location to the target



Our example scenario

 In this example, we 

represent our 

environment in the 

simplest manner possible

 Booleans determine if a 

node is passable

 All connections can be 

computed algorithmically, 

as opposite



The A* Algorithm



A* Origins

 An extension of the Dijkstra search algorithm

 Enhances Dijkstra by adding a ‘best first’ heuristic

 Means that, in an ideal world, we’re only ever 

considering nodes which might feasibly feature in the 

final path

 Dijkstra, by contrast, requires us to search the entire 

graph



A* Underpinnings and 

Characteristics

 A* is built upon the idea of an 𝑓-value which is 

computed for a node under consideration – the lower 

the 𝑓-value, the earlier we will consider the node.

𝑓 = 𝑔 + ℎ

 Where 𝑔 is the cost taken to reach the node we’re 

considering

 ℎ is the heuristic estimated minimum cost to reach the 

goal from the considered node, and thus

 𝑓 is the estimate of the node’s total cost; the cheaper 

the node, the earlier it is considered as a candidate



A* Underpinnings and 

Characteristics
 A* maintains two lists throughout an execution, these 

are:

 The Open List. This is a list of nodes of which the 

algorithm is aware – think of it as nodes that have been 

looked at, but not explored yet. This is a priority queue, 

sorted such that the first considered element has lowest 

𝑓-value

 The Closed List. This is a list of nodes which have been 

explored, accompanied by their parent nodes. All nodes 

on the final path will be in the Closed List, but not all 

nodes in the Closed List will be on the final path. 

 Generating the path tracks from the goal, via parents.



A* Algorithm



A* Algorithm



A* Algorithm



A* Algorithm Applied to the 

Scenario



A* Algorithm Addenda

 Often in high performance simulations, integer math is 

employed

 In our example, 10 is used for horizontal/vertical 

movement, and 14 for diagonal

 This is acceptable because the heuristic is an 

underestimate

 If the heuristic is an overestimate, we LOSE OUR 

CORRECTNESS CONDITION



Following the Path



Well, we have a route. What 

now?

 Agents have to follow the path

 If we simply move them from the centre of one grid 

square/location of one node to the next, then turn and 

repeat, it will look robotic

 Appropriate for certain situations – like a robot

 Not appropriate for many scenarios in which we’ll 

employ path-finding



Following the Path Believably

 Simple method:

 Take the computed path and use this to generate a set 

of target points

 When the agent gets close enough to a target waypoint, 

it becomes influenced by the next waypoint, changing 

direction gently

 This smooths out corners



Following the Path Believably

 More complex method:

 Use waypoints to 
generate a spline

 A spline is a curved line 
connecting a number of 
waypoints

 There are several ways to 
parameterise the creation 
of a spline

 Depending on 
parameterisation, the 
spline might not touch all 
waypoints, but it should 
follow the general shape



Following the Path Believably

 As we smooth out our path, we might introduce 

obstacles which our node graph avoids

 First, probably a flaw with the way we’re determining 

our node locations – we create the universe, we should 

know if the gap between two obstacles is so slender 

that splining about two points will make us collide

 Second, can address this using collision 

detection/response or, generally more appropriately, 

some form of FSM.



Weaknesses of

Graph Search



Path-Finding is Expensive

 Representing the environment as a graph has a high 

memory footprint

 Computing a route through that graph has a large 

processor cost – larger without the heuristic, O 𝑛 log𝑛 vs 

O 𝑛2

 We need to be circumspect in its application (and the 

complexity of the scenarios to which it’s applied)

 A* only valuable if the heuristic is actually useful –

consider a maze, this can be a poor scenario



Path-Finding is Expensive

 Hierarchical path 

planning can be 

employed to reduce 

costs

 We can often substitute 

FSMs in for path-

planning in simple 

pathing scenarios.

 A Goomba doesn’t need 

A*



The Heuristic

 If using A*, as opposed to Dijkstra, our heuristic guides 

us on the basis of which nodes it believes are most 

likely to lead to the goal (the closest nodes to the goal)

 The optimality condition here requires that the 

heuristic be a minimum possible cost.

 When given the choice between overestimating and 

underestimating, underestimate to guarantee optimality

 Or we’ll explore more expensive nodes first, and 

potentially overlook cheaper options



Crowd Navigation 

Overview



What is it?

 The navigation of groups of entities

 Could be large crowds with individual AI

 Could be squad-size collectives with shared decision 

making

 Could be large crowds made up of squads, or squads 

made up of individuals with independent AI, etc., etc.



Why do we care?

 We just covered graph search!

 Why don’t we just use that?

 Complexity - can be insoluble

 Expense – even if soluble (decoupled) can be expensive

 Many navigation scenarios don’t need explicit planning



How do we go about it?

 Largely solutions are based on adapting other algorithms

 Borrow principles from physics (attraction, repulsion)

 Borrow principles from nature

 Important part: the algorithm should be scalable, 

meaning it should not exponentially increase in time as 

agents are added



Moving as a “Fixed” Group



Fixed Group Motion

 Appropriate for small groups – RPGs, squad-based RTS

 Agents need to move intelligently on the abstract level –

navigate from point A to point B – but not necessarily on 

the agent level

 Computationally cheap and relatively simple for simple 

environments



The Approach

 Define arrangement of entities (this will likely be an 

array of coordinates, one point per entity, relative to a 

centre-point). We shall call this a ‘squad’.

 Using the centre-point as your starting position, perform 

an A* search to determine a path to the squad’s 

destination.

 Doesn’t need to be A* - if using some other algorithm to 

determine the squad’s general direction, can use that 

instead



The Approach

 Begin moving the centre-point of the squad along this 

route. This motion will, by definition, change the 

absolute coordinates of the entity position array – but 

their relative coordinates will remain the same.

 Apply a force to each member of the squad, in the 

direction of the updated location of its specific point.

 When the centre-point reaches its destination, after a 

given time period (long enough for entities to reach 

their own points relative to the centre-point), cease 

applying the force (to avoid oscillation).



Fixed Group Motion



Fixed Group Motion

 Efficient

 Plugs neatly into physics

 Scalable

 Can combine with flocking for large crowds of cohesive 

squads



Fixed Group Motion

 VULNERABLE IN 
COMPLEX 
ENVIRONMENTS

 Trapped entities

 Dumb entities

 This can be offset 
through combination 
of Line-of-Sight 
checks against 
Nearest Neighbours



Embedded Data



Embedded Data

 Leverages data which can be computed at compile time

 Data can also be computed during loading

 Can be valuable even in systems with only a few agents 

– pre-computation saves framerate

 Limited utility in highly dynamic environments

 Normally needs to be supplemented or recomputed in such 

cases



The Approach

 Divide map into a grid/mesh, appropriate to geography

 Solve Dijkstra/A* from every node, to every known goal 

node (VERY expensive in uncontrolled situations, but 

can be precomputed in many cases)

 Store the first ‘direction’ for each node, with respect to 

each goal; create a map of these ‘first directions’ for 

every goal node

 Entities reference this map when navigating, and flow 

in a direction defined by the grid/mesh region they 

occupy



Example



Notes

 Efficient at run-time

 Versatile – CAN account for deformable terrain, but not optimally

 Only appropriate for systems with known goal-points – can be generated 
at run-time, however, during level set-up. Not appropriate for 
generalised run-time generation.

 Bolts onto many other approaches (e.g. flocking, squads)

 Quick way to determine individual agent paths without computing A* 
again



Flocking



Flocking

 Very cheap and efficient algorithm

 Three elements to consider

 Can model huge crowds – hundreds of thousands on 

modern hardware

 Easily scales and subdivides



Flocking

 Three elements:

 Separation: How far an entity is from its nearest entities, to avoid 
crowding each other. This is important, as without this consideration 
eventually all Boids will wind up occupying the same position (or 
clustered into a massive mess of collision checks, if they have 
physical presence). This is a short-range repulsion.

 Alignment: The average direction of the flock is calculated (vector 
sum, then normalised).

 Cohesion: Steering towards the average position of the flock (mean 
positional vector sum). This is a long-range attraction



Flocking

 Separation:

Flock Direction

Flock CoM



Flocking

 Alignment:

Flock Direction

Flock CoM



Flocking

 Cohesion:

Flock Direction

Flock CoM



Flocking



Flocking

 Weighting factors can be applied to vary the importance 

of these three elements. 

 Range of separation boundary can be varied – more or 

less cohesive

 Alignment can be taken from other algorithms (A*, 

embedded data)

 Splining works for Boid alignment; only needs 

performing once, as boids naturally curve based on 

other factors over time



Nature-Inspired Algorithms



Adapting Strategies Found in the

Real World

 Many algorithms which come under ‘traditional’ 

research AI domain have roots in biology

 Genetic Algorithms

 Neural Networks

 Behaviourism vs. Cognitivism

 Boids, in many ways

 Here, we discuss natural strategies for multi-agent 

navigation



Ant Colonies

 An ant colony is 

comprised of a great 

many ants (our entities)

 At the beginning of our 

simulation, ants have 

no knowledge of their 

environment.

 Ants will search the 

environment for food

???

??? ???



Ant Colonies

 Upon finding food, they 
will return to the colony 
and leave a pheromone 
trail down the path they 
travelled

 This can be considered 
analogous to a weighting 
factor in intelligent path 
planning – like favouring 
cover over open space.



Ant Colonies

 If another ant, while 
searching for food, crosses 
the pheromone trail it is 
likely to try and follow it, 
rather than continue 
wandering.

 If it successfully finds food, it 
will leave its own pheromone 
trail as it returns to the 
colony.

!



Ant Colonies

 Over time, pheromone 
trails will naturally decay

 If a source of food is 
emptied, ants which follow 
the trail will not renew it

 Eventually will not be 
especially likely to follow 
it.





Ant Colonies

 Only applicable, really, in scenarios where strategic 
element matters

 Without a strategic element, this isn’t suitable for many 
game-related path-finding scenarios, for crowds or 
otherwise

 Can be bolted on to other approaches, or vice versa, in 
order to swarm multiple agents believably

 Other natural world approaches provide similar 
behaviours, from similar bases.



Key Reflections



What should we take from 

this regarding Crowds?

 Generally, these algorithms have more in common with 

physics than AI.

 Consider flocking – where is the intelligence?

 The idea is normally “what direction should I head this 

frame”, not “which nodes are on the route from my 

present location to my goal location?”

 Usually, the individual agent has no concept of goal 

location

 Excellent example of the overlap between various areas 

within game engineering



Summary
 Introduced Graph Search

 Discussed how we might represent our environment as a 
graph

 Explored heuristic graph search through the A* 
algorithm

 Discussed how graph search might be employed in other 
scenarios

 Considered the weaknesses of graph search

 Introduced crowd navigation

 Discussed several approaches to the problem

 Considered the influence of nature on path-finding

 Considered the difference between path-finding and 
strategy – comes back to the ‘AI engineering vs Design’ 
aspect


