
Networking Tutorial 1:

Introduction to 

Networking



New Concepts

 Multi-Player Gaming

 Multi-Player Gaming over Networks

 Sockets

 Server and Client

 ENet



Multi-Player Games

 Games are multi-player

 Always have been

 Except Solitaire

 And Chess against yourself

 ForeverAlone



Multi-Player Games

 Early PC Games were fairly innovative in that regard – the most fun you could 

have by yourself (apart from a tell-your-own-adventure book)

 But even in arcades, Multi-Player was a Thing.

 Game to home consoles, too.

 How do we categorise multi-player experiences?



Multi-Player Games

 Championship Manager around the same PC

 Mario Kart in the lounge

 CounterStrike

 Overwatch

 The Old Republic (if you can ever find another player…)



Network Multi-Player

 Most modern games expect multi-player outside of your lounge

 Players are not geographically co-located

 What does this mean?

 Well, there are levels…

 In order to provision this functionality, we need to understand the tech we’re 

going to be leveraging (this lecture), and its limitations and how we work 

around them (next lecture)



Sockets

 Sockets allow communication between processes –multiple processes running 

on the same machine, or multiple processes running on different machines

 Heterogeneous, distributed platforms – remember our discussion of the PC in 

terms of heterogeneous architecture

 Internet sockets allow us quick and simple access to the OS-managed network 

protocol stack, to communicate with other machines connected to ‘the 

internet’



Types of Socket

 Many different types of socket are available to us, but we only care about 

two:

 Stream sockets

 Datagram sockets

 These socket types are differentiated by their transport protocol



Stream Sockets

 These use Transmission Control Protocol (TCP) to send messages

 TCP provides ORDERED and RELIABLE connection between two hosts

 When a message is sent, TCP guarantees it will arrive in the right order, and 

ensures that if the message isn’t received, we know about it

 All of this is handled by the OS, so you don’t need to manage it yourself



Datagram Sockets

 These use User Datagram protocol

 UDP is a much simpler protocol

 NO delivery guarantees, NO ordering guarantees

 Very fast updates, but if data goes missing we won’t know about it



Which to pick?

 Dependent on the purpose of the communication

 Many networking applications will employ both guaranteed/ordered and fast 

based on the needs of the element (you need to know if a connection has 

been established for a log-in server, you don’t need to know if an individual 

avatar position update was received)

 Generally, though, game traffic is UDP

 Except WoW.



Programming with Sockets

 Address information

 Binding the Socket

 Connecting to the Socket

 Listening for Connections

 Accepting Connections



Programming with Sockets

 Sending

 Receiving

 Differences between TCP and UDP for Send/Receive

 Closing Sockets



Clients and Servers

 Different models of network architecture

 Games employ many forms

 Server-Client

 Peer to Peer

 Peer-Servers

 Cloud Distribution

 Geographical subdivision



ENet Library

 Creating Servers and Clients

 Connecting to a Server

 Managing Events

 Complex responses

 Packets

 Types and what we can do with them



Implementation

 Look at Framework sample code

 Think about how you would go about having a client-controlled object on your 

host physics engine



Summary

 Overview of multi-player gaming

 Introduced socket programming

 Introduced ENet


